EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear.

نویسندگان

  • Mohi Ahmed
  • Jinshu Xu
  • Pin-Xian Xu
چکیده

Inner ear neurogenesis depends upon the function of the proneural basic helix-loop-helix (bHLH) transcription factors NEUROG1 and NEUROD1. However, the transcriptional regulation of these factors is unknown. Here, using loss- and gain-of-function models, we show that EYA1 and SIX1 are crucial otic neuronal determination factors upstream of NEUROG1 and NEUROD1. Overexpression of both Eya1 and Six1 is sufficient to convert non-neuronal epithelial cells within the otocyst and cochlea as well as the 3T3 fibroblast cells into neurons. Strikingly, all the ectopic neurons express not only Neurog1 and Neurod1 but also mature neuronal markers such as neurofilament, indicating that Eya1 and Six1 function upstream of, and in the same pathway as, Neurog1 and Neurod1 to not only induce neuronal fate but also regulate their differentiation. We demonstrate that EYA1 and SIX1 interact directly with the SWI/SNF chromatin-remodeling subunits BRG1 and BAF170 to drive neurogenesis cooperatively in 3T3 cells and cochlear nonsensory epithelial cells, and that SOX2 cooperates with these factors to mediate neuronal differentiation. Importantly, we show that the ATPase BRG1 activity is required for not only EYA1- and SIX1-induced ectopic neurogenesis but also normal neurogenesis in the otocyst. These findings indicate that EYA1 and SIX1 are key transcription factors in initiating the neuronal developmental program, probably by recruiting and interacting with the SWI/SNF chromatin-remodeling complex to specifically mediate Neurog1 and Neurod1 transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Brg1 in progression of esophageal squamous cell carcinoma

Objective(s): Epigenetic regulation of gene expression can be carried out through chromatin remodeling enzymes such as SWI/SNF. Brg1 also known as SMARCA4 is a catalytic subunit of SWI/SNF, which is necessary for MMPs expression. Matrix metalloproteinases (MMPs) are known as important player enzymes during tumor progression and metastasis. Aberrant epigenetic modification of chromatin should be...

متن کامل

Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors.

Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation assays and mammary-specific genes as models, we show here that extracellular matrix molecules and prolactin cooperate to induce histone acetylation and binding...

متن کامل

An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development

Mammalian neural stem cells (NSCs) have the capacity to both self-renew and to generate all the neuronal and glial cell-types of the adult nervous system. Global chromatin changes accompany the transition from proliferating NSCs to committed neuronal lineages, but the mechanisms involved have been unclear. Using a proteomics approach, we show that a switch in subunit composition of neural, ATP-...

متن کامل

Functional and Structural Dissection of the SWI/SNF Chromatin Remodeling Complex: A Dissertation

The yeast SWI/SNF complex is the prototype of a subfamily of ATP-dependent chromatin remodeling complexes. It consists of eleven stoichiometric subunits including Swi2p/Snf2p, Swi1p, Snf5p, Swi3p, Swp82p, Swp73p, Arp7p, Arp9p, Snf6p, Snf11p, and Swp29p, with a molecular weight of 1.14 mega Daltons. Swi2p/Snf2p, the catalytic subunit of SWI/SNF, is evolutionally conserved from yeast to human cel...

متن کامل

The transcription factor six1 inhibits neuronal and promotes hair cell fate in the developing zebrafish (Danio rerio) inner ear.

The developmental processes leading to the differentiation of mechanosensory hair cells and statoacoustic ganglion neurons from the early otic epithelium remain unclear. Possible candidates include members of the Pax-Six-Eya-Dach (paired box-sine oculis homeobox-eyes absent-dachshund) gene regulatory network. We cloned zebrafish six1 and studied its function in inner ear development. Gain- and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 139 11  شماره 

صفحات  -

تاریخ انتشار 2012